使用Python怎么实现一个分割训练集和测试集?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。
数据集介绍
使用数据集Wine,来自UCI 。包括178条样本,13个特征。
import pandas as pd
import numpy as np
df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data', header=None)
df_wine.columns = ['Class label', 'Alcohol',
'Malic acid', 'Ash',
'Alcalinity of ash', 'Magnesium',
'Total phenols', 'Flavanoids',
'Nonflavanoid phenols',
'Proanthocyanins',
'Color intensity', 'Hue',
'OD280/OD315 of diluted wines',
'Proline']
分割训练集和测试集
随机分割
分为训练集和测试集
方法:使用scikit-learn中model_selection子模块的train_test_split函数
from sklearn.model_selection import train_test_split
X, y = df_wine.ix[:, 1:].values, df_wine.ix[:, 0].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)#随机选择25%作为测试集,剩余作为训练集
关于使用Python怎么实现一个分割训练集和测试集问题的解答就分享到这里了,希望以上内容可以对大家有一定的帮助,如果你还有很多疑惑没有解开,可以关注天达云行业资讯频道了解更多相关知识。