如何进行LSTM总结及sin与cos拟合应用,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。
一、LSTM总结
RNN在实际应用中,无法处理无关的信息,很难处理长距离的依赖。LSTM思路,在原始RNN的隐藏层只有一个状态h,它对短期的输入非常敏感,那么,我们再增加一个状态c, 它来保存长期的状态。其结构如下:
与RNN比较,
定义LSTM类如下:
class RNN(nn.Module):
def __init__(self):
super(RNN, self).__init__()
self.rnn = nn.LSTM(
input_size=INPUT_SIZE,
hidden_size=32,
num_layers=1,
batch_first=True
)
self.out = nn.Linear(32, 1)
def forward(self, x, h_state, c_state):
r_out, (h_state, c_state) = self.rnn(x, (h_state, c_state))
out = self.out(r_out).squeeze()
return out, h_state, c_state
改进GRU版本: (Gated Recurrent Unit)

二、sin与cos拟合应用
import torch
from torch import nn
import numpy as np
import matplotlib.pyplot as plt
TIME_STEP = 10
INPUT_SIZE = 1
learning_rate = 0.001
class RNN(nn.Module):
def __init__(self):
super(RNN, self).__init__()
self.rnn = nn.LSTM(
input_size=INPUT_SIZE,
hidden_size=32,
num_layers=1,
batch_first=True
)
self.out = nn.Linear(32, 1)
def forward(self, x, h_state, c_state):
r_out, (h_state, c_state) = self.rnn(x, (h_state, c_state))
out = self.out(r_out).squeeze()
return out, h_state, c_state
rnn = RNN()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(rnn.parameters(), lr=learning_rate)
h_state = torch.randn(1, 1, 32)
c_state = torch.randn(1, 1, 32)
plt.figure(1, figsize=(12, 5))
plt.ion()
for step in range(100):
start, end = step * np.pi, (step + 1) * np.pi
steps = np.linspace(start, end, TIME_STEP, dtype=np.float32, endpoint=False)
x_np = np.sin(steps) # x_np.shape: 10
y_np = np.cos(steps) # y_np.shape: 10
x = torch.from_numpy(x_np[np.newaxis, :, np.newaxis])
y = torch.from_numpy(y_np)
prediction, h_state, c_state = rnn(x, h_state, c_state)
h_state = h_state.data
c_state = c_state.data
loss = criterion(prediction, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
plt.plot(steps, y_np.flatten(), 'r-')
plt.plot(steps, prediction.data.numpy().flatten(), 'b-')
plt.draw()
plt.pause(.05)
plt.ioff()
plt.show()
看完上述内容,你们掌握如何进行LSTM总结及sin与cos拟合应用的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注天达云行业资讯频道,感谢各位的阅读!