这篇文章主要介绍“python卡方检验实例分析”,在日常操作中,相信很多人在python卡方检验实例分析问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”python卡方检验实例分析”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!
说明
1、统计样本的实际观测值与理论推断值之间的偏差程度,实际观测值与理论推断值之间的偏差程度决定了卡方值的大小。
卡方值越大,两者的偏差程度越大;相反,两者的偏差越小;如果两个值完全相等,卡方值为0。
2、一般适用于自变量X为离散类型,由于变量Y为离散类别值,数据一般呈正态分布。
实例
从一所中学随机抽取两个班,调查他们对晚上自习的态度。甲班41人赞成,25人反对;乙班34人赞成,29人反对。这两个班对晚上自习的态度是否有显著差异。
from scipy.stats import chi2_contingency
import numpy as np
data = np.array([[41,25], [34,29]])
kt= chi2_contingency(data)
print('卡方值=%.4f, p值=%.4f, 自由度=%i expected_frep=%s'%kt)
到此,关于“python卡方检验实例分析”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注天达云网站,小编会继续努力为大家带来更多实用的文章!