这期内容当中小编将会给大家带来有关Flink中怎么自定义Redis的Sink函数,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
1.添加redis对应pom依赖
<dependency> <groupId>org.apache.bahir</groupId> <artifactId>flink-connector-redis_2.11</artifactId> <version>1.0</version></dependency>
2.主函数代码:
package com.hadoop.ljs.flink110.redis;import org.apache.flink.api.common.functions.FilterFunction;import org.apache.flink.api.common.functions.MapFunction;import org.apache.flink.streaming.api.datastream.DataStream;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.connectors.redis.RedisSink;import org.apache.flink.streaming.connectors.redis.common.config.FlinkJedisPoolConfig;import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommand;import org.apache.flink.streaming.connectors.redis.common.mapper.RedisCommandDescription;import org.apache.flink.streaming.connectors.redis.common.mapper.RedisMapper;import scala.Tuple2;/** * @author: Created By lujisen * @company ChinaUnicom Software JiNan * @date: 2020-05-02 10:30 * @version: v1.0 * @description: com.hadoop.ljs.flink110.redis */public class RedisSinkMain { public static void main(String[] args) throws Exception { StreamExecutionEnvironment senv =StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<String> source = senv.socketTextStream("localhost", 9000); DataStream<String> filter = source.filter(new FilterFunction<String>() { @Override public boolean filter(String value) throws Exception { if (null == value || value.split(",").length != 2) { return false; } return true; } }); DataStream<Tuple2<String, String>> keyValue = filter.map(new MapFunction<String, Tuple2<String, String>>() { @Override public Tuple2<String, String> map(String value) throws Exception {
String[] split = value.split(",");
return new Tuple2<>(split[0], split[1]); } }); //创建redis的配置 单机redis用FlinkJedisPoolConfig,集群redis需要用FlinkJedisClusterConfig FlinkJedisPoolConfig redisConf = new FlinkJedisPoolConfig.Builder().setHost("worker2.hadoop.ljs").setPort(6379).setPassword("123456a?").build();
keyValue.addSink(new RedisSink<Tuple2<String, String>>(redisConf, new RedisMapper<Tuple2<String, String>>() { @Override public RedisCommandDescription getCommandDescription() { return new RedisCommandDescription(RedisCommand.HSET,"table1"); } @Override public String getKeyFromData(Tuple2<String, String> data) { return data._1; } @Override public String getValueFromData(Tuple2<String, String> data) { return data._2; } })); /*启动执行*/ senv.execute(); }}
3.函数测试
1).window端scoket发送数据

2.redis结果验证

上述就是小编为大家分享的Flink中怎么自定义Redis的Sink函数了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注天达云行业资讯频道。