广义回归神经网络(GRNN)是径向基神经网络(RBF)的一种,GRNN具有很强的非线性映射能力和学习速度,比RBF具有更强的优势,网络最后收敛于样本量集聚较多的优化回归面,并且在样本数据少时,预测效果也较好。此外,网络还可以处理不稳定的数据,因此GRNN在很多领域得到应用。
%% 清空环境变量
clc;
clear
close all
nntwarn off;
%% 载入数据
load data;
% 载入数据并将数据分成训练和预测两类
p_train=p(1:12,:);
t_train=t(1:12,:);
p_test=p(13,:);
t_test=t(13,:);
%% 交叉验证
desired_spread=[];
mse_max=10e20;
desired_input=[];
desired_output=[];
result_perfp=[];
indices = crossvalind('Kfold',length(p_train),4);
h=waitbar(0,'正在寻找最优化参数....');
k=1;
for i = 1:4
perfp=[];
disp(['以下为第',num2str(i),'次交叉验证结果'])
test = (indices == i); train = ~test;
p_cv_train=p_train(train,:);
t_cv_train=t_train(train,:);
p_cv_test=p_train(test,:);
t_cv_test=t_train(test,:);
p_cv_train=p_cv_train';
t_cv_train=t_cv_train';
p_cv_test= p_cv_test';
t_cv_test= t_cv_test';
[p_cv_train,minp,maxp,t_cv_train,mint,maxt]=premnmx(p_cv_train,t_cv_train);
p_cv_test=tramnmx(p_cv_test,minp,maxp);
for spread=0.1:0.1:2