figure
gscatter(X(:,1),X(:,2),Y);
h = gca;
lims = [h.XLim h.YLim];
title('{\bf Scatter Diagram of Iris Measurements}');
xlabel('Petal Length (cm)');
ylabel('Petal Width (cm)');
legend('Location','Northwest');
% 有三个类,其中之一是线性可分离的
%%
% 对每一类进行一下操作:
% 创建一个逻辑向量表示是否为这个类的一员
% 使用处理好的数据和逻辑向量训练SVM分类器
% 将分类器存储在cell数组中
% 预先定义类别顺序是比较好的做法
SVMModels = cell(3,1);
classes = unique(Y);
rng(1);
for j = 1:numel(classes)
indx = strcmp(Y,classes(j));
% 为每一类别创建二元分类器
SVMModels{j} = fitcsvm(X,indx,'ClassNames',[false true],'Standardize',true,...
'KernelFunction','rbf','BoxConstraint',1);
end
%%
% |SVMModels|是一个3X1的cell数组
% 每个cell是一个分类器
% 每个分类器的正值就是setosa,versicolor和virginica
%% 将训练数据的分布坐标划分为网格,并视为新的观测
% 使用每个分类器估计新观测的得分
d = 0.02;
[x1Grid,x2Grid] = meshgrid(min(X(:,1)):d:max(X(:,1)),...
min(X(:,2)):d:max(X(:,2)));
xGrid = [x1Grid(:),x2Grid(:)];
N = size(xGrid,1);
Scores = zeros(N,numel(classes));
for j = 1:numel(classes)
[~,score] = predict(SVMModels{j},xGrid);
Scores(:,j) = score(:,2);
% 第二列包含正值类别得分
end
%% 每一行的得分都有三个,最大的就是这一行对应的类别
[~,maxScore] = max(Scores,[],2);
%% 将每一个类别对应的网格在图中显示出来
figure