这篇文章主要介绍DataFrame怎么用,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
一、概述:
DataFrame是一个分布式数据集,可以理解为关系型数据库一张表,由字段和字段类型、字段值按列组织,且支持四种语言,在Scala API中可以理解为: FataFrame=Dataset[ROW]
注:DataFrame产生于V1.3之后,在V1.3前为SchemaRDD,在V1.6以后又添加了Dataset
二、DataFrame vs RDD 差异:
概念 :
两个都是分布式容器,DF理解是一个表格除了RDD数据以外还有Schema,也支持复杂数据类型(map..)
API :
DataFrame提供的API比RDD丰富 支持map filter flatMap .....
数据结构:RDD知道类型没有结构, DF提供Schema信息 有利于优化,性能上好
底层 :基于运行环境不一样,RDD开发的Java/Scala API运行底层环境JVM,
DF在SparkSQL中转换成逻辑执行计划(locaical Plan)和物理执行计划(Physical Plan)中间自身优化功能,性能差异大
三、json文件操作
[hadoop@hadoop001 bin]$./spark-shell --master local[2] --jars ~/software/mysql-connector-java-5.1.34-bin.jar
-- 读取json文件
scala>val df = spark.read.json("file:///home/hadoop/data/people.json")
18/09/02 11:47:20 WARN ObjectStore: Failed to get database global_temp, returning NoSuchObjectException
df: org.apache.spark.sql.DataFrame = [age: bigint, name: string]
-- 打印schema信息
scala> df.printSchema
root
|-- age: long (nullable = true) -- 字段 类型 允许为空
|-- name: string (nullable = true)
-- 打印字段内容
scala> df.show
+----+-------+
| age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+
-- 打印查询字段
scala> df.select("name").show
+-------+
| name|
+-------+
|Michael|
| Andy|
| Justin|
+-------+
-- 单引号,存在隐式转换
scala> df.select('name).show
+-------+
| name|
+-------+
|Michael|
| Andy|
| Justin|
+-------+
--
双引号隐式转换不识别
scala> df.select("name).show
<console>:1: error: unclosed string literal
df.select("name).show
^
-- 年龄计算,NULL无法计算
scala> df.select($"name",$"age" + 1).show
+-------+---------+
| name|(age + 1)|
+-------+---------+
|Michael| null|
| Andy| 31|
| Justin| 20|
+-------+---------+
-- 年龄过滤
scala> df.filter($"age" > 21).show
+---+----+
|age|name|
+---+----+
| 30|Andy|
+---+----+
-- 年龄分组 汇总
scala> df.groupBy("age").count.show
+----+-----+
| age|count|
+----+-----+
| 19| 1|
|null| 1|
| 30| 1|
+----+-----+
-- 创建一个临时视图
scala> df.createOrReplaceTempView("people")
scala>spark.sql("select * from people").show
+----+-------+
| age| name|
+----+-------+
|null|Michael|
| 30| Andy|
| 19| Justin|
+----+-------+
四、DataFrame对象上Action操作
-- 定义case class 用来创建Schema
case class Student(id:String,name:String,phone:String,Email:String)
-- RDD与DF反射方式实现
val students = sc.textFile("file:///home/hadoop/data/student.data").map(_.split("\\|")).map(x=>Student(x(0),x(1),x(2),x(3))).toDF()
-- 打印DF信息
students.printSchema
-- show(numRows: Int, truncate: Boolean)
-- numRows截取前20行和truncate读取前20字符串
-- students.show(5,false) 读取前五行和所有字符串
scala> students.show
+---+--------+--------------+--------------------+
| id| name| phone| Email|
+---+--------+--------------+--------------------+
| 1| Burke|1-300-746-8446|ullamcorper.velit...|
| 2| Kamal|1-668-571-5046|pede.Suspendisse@...|
| 3| Olga|1-956-311-1686|Aenean.eget.metus...|
| 4| Belle|1-246-894-6340|vitae.aliquet.nec...|
| 5| Trevor|1-300-527-4967|dapibus.id@acturp...|
| 6| Laurel|1-691-379-9921|adipiscing@consec...|
| 7| Sara|1-608-140-1995|Donec.nibh@enimEt...|
| 8| Kaseem|1-881-586-2689|cursus.et.magna@e...|
| 9| Lev|1-916-367-5608|Vivamus.nisi@ipsu...|
| 10| Maya|1-271-683-2698|accumsan.convalli...|
| 11| Emi|1-467-270-1337|est@nunc.com|.......|
| 12| Caleb|1-683-212-0896|Suspendisse@Quisq...|
| 13|Florence|1-603-575-2444|sit.amet.dapibus@...|
| 14| Anika|1-856-828-7883|euismod@ligulaeli...|
| 15| Tarik|1-398-171-2268|turpis@felisorci.com|
| 16| Amena|1-878-250-3129|lorem.luctus.ut@s...|
| 17| Blossom|1-154-406-9596|Nunc.commodo.auct...|
| 18| Guy|1-869-521-3230|senectus.et.netus...|
| 19| Malachi|1-608-637-2772|Proin.mi.Aliquam@...|
| 20| Edward|1-711-710-6552|lectus@aliquetlib...|
+---+--------+--------------+--------------------+
only showing top 20 rows
-- students.head(5) 返回前几行数据
scala> students.head(5).foreach(println)
[1,Burke,1-300-746-8446,ullamcorper.velit.in@ametnullaDonec.co.uk]
[2,Kamal,1-668-571-5046,pede.Suspendisse@interdumenim.edu]
[3,Olga,1-956-311-1686,Aenean.eget.metus@dictumcursusNunc.edu]
[4,Belle,1-246-894-6340,vitae.aliquet.nec@neque.co.uk]
[5,Trevor,1-300-527-4967,dapibus.id@acturpisegestas.net]
-- 查询具体字段
scala> students.select("id","name").show(5)
+---+------+
| id| name|
+---+------+
| 1| Burke|
| 2| Kamal|
| 3| Olga|
| 4| Belle|
| 5|Trevor|
+---+------+
-- 修改字段取别名
scala> students.select($"name".as("new_name")).show(5)
+--------+
|new_name|
+--------+
| Burke|
| Kamal|
| Olga|
| Belle|
| Trevor|
+--------+
--查询id大于五
scala> students.filter("id>5").show(5)
+---+------+--------------+--------------------+
| id| name| phone| Email|
+---+------+--------------+--------------------+
| 6|Laurel|1-691-379-9921|adipiscing@consec...|
| 7| Sara|1-608-140-1995|Donec.nibh@enimEt...|
| 8|Kaseem|1-881-586-2689|cursus.et.magna@e...|
| 9| Lev|1-916-367-5608|Vivamus.nisi@ipsu...|
| 10| Maya|1-271-683-2698|accumsan.convalli...|
+---+------+--------------+--------------------+
-- 查询名称为空或者名称为NULL(filter=where)
scala> students.filter("name=''or name='NULL'").show(false)
+---+----+--------------+--------------------------+
|id |name|phone |Email |
+---+----+--------------+--------------------------+
|21 | |1-711-710-6552|lectus@aliquetlibero.co.uk|
|22 | |1-711-710-6552|lectus@aliquetlibero.co.uk|
|23 |NULL|1-711-710-6552|lectus@aliquetlibero.co.uk|
+---+----+--------------+--------------------------+
-- 查询ID大于5且名称模糊查询
scala> students.filter("id>5 and name like 'M%'").show(5)
+---+-------+--------------+--------------------+
| id| name| phone| Email|
+---+-------+--------------+--------------------+
| 10| Maya|1-271-683-2698|accumsan.convalli...|
| 19|Malachi|1-608-637-2772|Proin.mi.Aliquam@...|
+---+-------+--------------+--------------------+
-- 按照名称升序排序且不等于空
scala> students.sort($"name").select("id","name").filter("name <> ''").show(3)
+---+-----+
| id| name|
+---+-----+
| 16|Amena|
| 14|Anika|
| 4|Belle|
+---+-----+
-- 按照名称倒叙排序(sort = orderBy)
scala> students.sort($"name".desc).select("name").show(5)
+------+
| name|
+------+
|Trevor|
| Tarik|
| Sara|
| Olga|
| NULL|
+------+
-- 年龄分组 汇总
scala> students.groupBy("age").count().show
+----+-----+
| age|count|
+----+-----+
| 19| 1|
|null| 1|
| 30| 1|
+----+-----+
-- 聚合函数使用
scala> students.agg("id" -> "max", "id" -> "sum").show(false)
+-------+-------+
|max(id)|sum(id)|
+-------+-------+
|9 |276.0 |
+-------+-------+
-- join操作,using模式seq指定多个字段
students.join(students2, Seq("id", "name"), "inner")
-- DataFrame的join操作有inner, outer, left_outer, right_outer, leftsemi类型
-- 指定类型,指定join的类型
students.join(students2 , students("id" ) === students2( "t1_id"), "inner")
五、DataFrame API实现文件操作
1.maven依赖下载
<spark.version>2.3.1</spark.version>
<!-- 添加Spark Core的dependency -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
<!-- 添加Spark SQL的dependency -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>${spark.version}</version>
</dependency>
2、IDEA实现方式:
package com.zrc.ruozedata.sparkSQL
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.sql.{Row, SparkSession}
object SparkSQL001 extends App {
/*
* RDD与DataFrame反射方式实现(一)
* 创建RDD --> DataFrema
* 利用case class创建Schema,来解析输出文本每一行信息
*/
val spark = SparkSession.builder()
.master("local[2]")
.appName("SparkSQL001")
.getOrCreate() // 操作hive添加
val infos = spark.sparkContext.textFile("file:///F:/infos.txt")
/*
import spark.implicits._
val infoDF = infos.map(_.split(",")).map(x=>Info(x(0).toInt,x(1),x(2).toInt)).toDF()
infoDF.show()
*/
/*
* RDD与DataFrame使用StructType方式实现(二)
* StructType构造了StructField方法传入name和dataType
* 每一个字段就是为一个StructField
* Schema和RDD通过createDataFrame方法作用起来
*/
// 注意通过ROW获取的需要转换对应类型
val infoss = infos.map(_.split(",")).map(x=>Row(x(0).trim.toInt,x(1),x(2).trim.toInt))
val fields = StructType(
Array(
StructField("id",IntegerType,true),
StructField("name",StringType,true),
StructField("age",IntegerType,true)
)
)
val schema = StructType(fields)
val infoDF = spark.createDataFrame(infoss,schema)
infoDF.show()
spark.stop()
}
// case class Info (id:Int,name:String,age:Int)
以上是“DataFrame怎么用”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注天达云行业资讯频道!