这篇文章主要讲解了“Pytorch多层感知机的实现方法”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Pytorch多层感知机的实现方法”吧!
import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
import torchvision
from torchvision import transforms
num_inputs=784
num_outputs=10
num_hiddens=256
mnist_train = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=True, download=True, transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=False, download=True, transform=transforms.ToTensor())
batch_size = 256
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False)
def evalute_accuracy(data_iter,net):
acc_sum,n=0.0,0
for X,y in data_iter:
acc_sum+=(net(X).argmax(dim=1)==y).float().sum().item()
n+=y.shape[0]
return acc_sum/n
def train(net,train_iter,test_iter,loss,num_epochs,batch_size,params=None,lr=None,optimizer=None):
for epoch in range(num_epochs):
train_l_sum,train_acc_sum,n=0.0,0.0,0
for X,y in train_iter:
y_hat=net(X)
l=loss(y_hat,y).sum()
if optimizer is not None:
optimizer.zero_grad()
elif params is not None and params[0].grad is not None:
for param in params:
param.grad.data.zero_()
l.backward()
optimizer.step() # “softmax回归的简洁实现”一节将用到
train_l_sum+=l.item()
train_acc_sum+=(y_hat.argmax(dim=1)==y).sum().item()
n+=y.shape[0]
test_acc=evalute_accuracy(test_iter,net);
print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
% (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))
class Faltten(nn.Module):
def __init__(self):
super(Faltten, self).__init__()
def forward(self,x):
return x.view(x.shape[0],-1)
net =nn.Sequential(
Faltten(),
nn.Linear(num_inputs,num_hiddens),
nn.ReLU(),
nn.Linear(num_hiddens,num_outputs)
)
for params in net.parameters():
init.normal_(params,mean=0,std=0.01)
batch_size=256
loss=torch.nn.CrossEntropyLoss()
optimizer=torch.optim.SGD(net.parameters(),lr=0.5)
num_epochs=5
train(net,train_iter,test_iter,loss,num_epochs,batch_size,None,None,optimizer)
感谢各位的阅读,以上就是“Pytorch多层感知机的实现方法”的内容了,经过本文的学习后,相信大家对Pytorch多层感知机的实现方法这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是天达云,小编将为大家推送更多相关知识点的文章,欢迎关注!