本篇内容主要讲解“MapReduce编程步骤是怎样的”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“MapReduce编程步骤是怎样的”吧!

Hadoop三大模块:分布式存储HDFS、分布式计算MapReduce、资源调度引擎Yarn
我们在前面几节课已经介绍了hadoop软件在是怎样存储数据的(HDFS),从今天开始的后面几节课,我们来
学习一下:MapReduce分布式计算框架,这是一个比较难理解同时又非常重要的内容,虽然大部分情况下
我们都是使用Hive、spark之类的工具而不是直接写MapReduce程序来处理业务,但是,这些工具还是基于
MapReduce的思想来实现的,所以,现在能很好的理解和掌握MapReduce编程,这对以后的学习十分有益。
1. mapreduce的定义
2. mapreduce的核心思想
MapReduce思想在生活中处处可见。或多或少都曾接触过这种思想。MapReduce的思想核心是“分而治处”,适用于大规模数据处理场景。
Map负责“分”,即把复杂的任务分解为若干个“简单的任务”来并行处理。(拆分的前提:这些小任务可以并行计算,彼此间几乎没有依赖关系。)
Reduce负责“合”,即对map阶段的结果进行全局汇总。
这两个阶段合起来正是MapReduce思想的体现。
还有一个比较形象的例子解释MapReduce:
3. MapReduce编程模型
MapReduce由两个阶段组成:
Map阶段(切分成一个个小的任务)
Reduce阶段(汇总小任务的结果)
4. mapreduce编程步骤
这个是不太容易理解的地方,一时想不明白不着急,先死记下来,慢慢来。

mapreduce编程大致分为三个阶段,一共8个步骤,下面简单说明一下这8个步骤,
我们将在下一节课中,以一个实例来详细介绍这8步骤。
1. Map阶段2个步骤
2. shuffle阶段4个步骤
第三步:对上一步输出的key,value对进行分区。(相同key的kv对属于同一分区)
第四步:对每个分区的数据按照key进行排序
第五步:对分区中的数据进行规约(combine操作),降低数据的网络拷贝(可选步骤)
第六步:对排序后的kv对数据进行分组;分组的过程中,key相同的kv对为一组;将同一组的kv对的所有value放到一个集合当中(每组数据调用一次reduce方法)
3. reduce阶段2个步骤
看到这里是不是一头雾水,没关系,这节课只要理解一点,为什么要有MapReduce这种计算框架,其实,就是充分利用集群资源,把一个很大数据量的任务
先折分成几个小任务,然后把几个小任务的计算结果合并成最终
的结果,这样,同一时间就充分利用了集群的计算资源来计算,而不用一个一个的排队等待。
到此,相信大家对“MapReduce编程步骤是怎样的”有了更深的了解,不妨来实际操作一番吧!这里是天达云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!