这篇文章给大家介绍伸缩Kubernetes到2500个节点中遇到的问题和解决方法是什么,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。
Kubernetes自从1.6起便号称可以承载5000个以上的节点,但是从数十到5000的路上,难免会遇到问题。
遇到的问题以及如何解决
问题一:1 ~ 500个节点之后
问题:
kubectl 有时会出现 timeout(p.s. kubectl -v=6
可以显示所有API细节指令)
尝试解决:
原因:
排除以上原因,开始排查master上剩下的几个服务(etcd、kube-proxy)
开始尝试调整etcd
通过使用datadog查看etcd吞吐量,发现有异常延迟(latency spiking ~100 ms)
通过Fio工具做性能评估,发现只用到10%的IOPS(Input/Output Per Second),由于写入延迟(write latency 2ms)降低了性能
尝试把SSD从网络硬盘变为每台机器有个local temp drive(SSD)
结果从~100ms —> 200us
问题二:~1000个节点的时候
问题:
尝试解决:
原因:
发现Fluentd和Datadog抓取每个节点上资料过于频繁
调低两个服务的抓取频率,网络性能从500mb/s降低到几乎没有
etcd小技巧:通过--etcd-servers-overrides
可以将Kubernetes Event的资料写入作为切割,分不同机器处理,如下所示
--etcd-servers-overrides=/events#https://0.example.com:2381;https://1.example.com:2381;https://2.example.com:2381
问题三:1000 ~ 2000个节点
问题:
尝试解决:
解決方法:
各种服务的优化
Kube masters 的高可用
一般来说,我们的架构是一个kube-master(主要的 Kubernetes 服务提供组件,上面有kube-apiserver、kube-scheduler 和kube-control-manager)加上多個slave。但是要达到高可用,要参考一下方式实现:
{
"kind" : "Policy",
"apiVersion" : "v1",
"predicates" : [
{"name" : "GeneralPredicates"},
{"name" : "MatchInterPodAffinity"},
{"name" : "NoDiskConflict"},
{"name" : "NoVolumeZoneConflict"},
{"name" : "PodToleratesNodeTaints"}
],
"priorities" : [
{"name" : "MostRequestedPriority", "weight" : 1},
{"name" : "InterPodAffinityPriority", "weight" : 2}
]
}
以上为调整kubernetes scheduler范例,通过调高InterPodAffinityPriority的权重,达到我们的目的。更多示范参考范例.
需要注意的是,目前Kubernetes Scheduler Policy并不支持动态切换,需要重启kube-apiserver(issue: 41600)
调整scheduler policy造成的影响
OpenAI使用了KubeDNS ,但不久后发现——
问题:
经常出现DNS查询不到的情况(随机发生)
超过 ~200QPS domain lookup
尝试解决:
解决方法:
由于scheduler policy造成了许多POD的集中
KubeDNS很轻量,容易被分配到同一节点上,造成domain lookup的集中
需要修改POD affinity(相关介绍),尽量让KubeDNS分配到不同的node之上
affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- weight: 100
labelSelector:
matchExpressions:
- key: k8s-app
operator: In
values:
- kube-dns
topologyKey: kubernetes.io/hostname
新建节点时Docker image pulls缓慢的问题
问题:
尝试解决:
解决方法:
在kubelet增加选项--serialize-image-pulls=false
来启动image pulling,让其他服务可以更早地pull(参考:kubelet启动选项)
这个选项需要docker storgae切换到overlay2(可以参考docker教学文章)
并且把docker image存放到SSD,可以让image pull更快一些
补充:source trace
// serializeImagePulls when enabled, tells the Kubelet to pull images one
// at a time. We recommend *not* changing the default value on nodes that
// run docker daemon with version < 1.9 or an Aufs storage backend.
// Issue #10959 has more details.
SerializeImagePulls *bool `json:"serializeImagePulls"`
提高docker image pull的速度
此外,还可以通过以下方式来提高pull的速度
kubelet参数--image-pull-progress-deadline
要提高到30mins docker daemon参数max-concurrent-download
调整到10才能多线程下载
网络性能提升
Flannel性能限制
OpenAI节点间的网络流量,可以达到10-15GBit/s,但是由于Flannel所以导致流量会降到 ~2GBit/s
解决方式是拿掉Flannel,使用实际的网络
关于伸缩Kubernetes到2500个节点中遇到的问题和解决方法是什么就分享到这里了,希望以上内容可以对大家有一定的帮助,可以学到更多知识。如果觉得文章不错,可以把它分享出去让更多的人看到。