这篇文章主要讲解了keras2.0如何将Merge层改为函数式,内容清晰明了,对此有兴趣的小伙伴可以学习一下,相信大家阅读完之后会有帮助。
不能再向以前一样使用
model.add(Merge([Model1,Model2]))
必须使用函数式
out = Concatenate()([model1.output, model2.output])
补充知识:keras 新版接口修改
1.
# b = MaxPooling2D((3, 3), strides=(1, 1), border_mode='valid', dim_ordering='tf')(x)
b = MaxPooling2D((3, 3), strides=(1, 1), padding='valid', data_format="channels_last")(x)
2.
from keras.layers.merge import concatenate
# x = merge([a, b], mode='concat', concat_axis=-1)
x = concatenate([a, b], axis=-1)
3.
from keras.engine import merge
m = merge([init, x], mode='sum')
Equivalent Keras 2.0.2 code:
from keras.layers import add
m = add([init, x])
4.
# x = Convolution2D(32 // nb_filters_reduction_factor, 3, 3, subsample=(1, 1), activation='relu',
# init='he_normal', border_mode='valid', dim_ordering='tf')(x)
x = Conv2D(32 // nb_filters_reduction_factor, (3, 3), activation="relu", strides=(1, 1), padding="valid",
data_format="channels_last",
kernel_initializer="he_normal")(x)
1.
# b = MaxPooling2D((3, 3), strides=(1, 1), border_mode='valid', dim_ordering='tf')(x)
b = MaxPooling2D((3, 3), strides=(1, 1), padding='valid', data_format="channels_last")(x)
2.
from keras.layers.merge import concatenate
# x = merge([a, b], mode='concat', concat_axis=-1)
x = concatenate([a, b], axis=-1)
3.
from keras.engine import merge
m = merge([init, x], mode='sum')
Equivalent Keras 2.0.2 code:
from keras.layers import add
m = add([init, x])
4.
# x = Convolution2D(32 // nb_filters_reduction_factor, 3, 3, subsample=(1, 1), activation='relu',
# init='he_normal', border_mode='valid', dim_ordering='tf')(x)
x = Conv2D(32 // nb_filters_reduction_factor, (3, 3), activation="relu", strides=(1, 1), padding="valid",
data_format="channels_last",
kernel_initializer="he_normal")(x)
看完上述内容,是不是对keras2.0如何将Merge层改为函数式有进一步的了解,如果还想学习更多内容,欢迎关注天达云行业资讯频道。