这篇文章将为大家详细讲解有关Python中线程池模块之多线程的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
1、线程池模块
引入
from concurrent.futures import ThreadPoolExecutor
2、使用线程池
一个简单的线程池使用案例
from concurrent.futures import ThreadPoolExecutor
import time
pool = ThreadPoolExecutor(10, 'Python')
def fun():
time.sleep(1)
print(1, end='')
if __name__ == '__main__':
# 列表推导式
[pool.submit(fun) for i in range(20) if True]
from concurrent.futures import ThreadPoolExecutor
import time
pool = ThreadPoolExecutor(10, 'Python')
def fun(arg1,arg2):
time.sleep(1)
print(arg1, end=' ')
print(arg2, end=' ')
if __name__ == '__main__':
# 列表推导式
[pool.submit(fun,i,i) for i in range(20) if True]
# 单个线程的执行
task = pool.submit(fun,'Hello','world')
# 判断任务执行状态
print(f'task status {task.done()}')
time.sleep(4)
print(f'task status {task.done()}')
# 获取结果的函数是阻塞的,所以他会等线程结束之后才会输出
print(task.result())
3、获取结果
阻塞等待
print(task.result())
批量获取结果
for future in as_completed(all_task):
data = future.result()
阻塞主线程,等待执行结束再执行下一个业务
# 等待线程全部执行完毕
wait(pool.submit(fun,1,2),return_when=ALL_COMPLETED)
print('')
python有哪些常用库
python常用的库:1.requesuts;2.scrapy;3.pillow;4.twisted;5.numpy;6.matplotlib;7.pygama;8.ipyhton等。
关于“Python中线程池模块之多线程的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。