这篇文章主要讲解了“分布式锁用Redis还是Zookeeper”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“分布式锁用Redis还是Zookeeper”吧!
为什么用分布式锁?在讨论这个问题之前,我们先来看一个业务场景。
为什么用分布式锁?
系统 A 是一个电商系统,目前是一台机器部署,系统中有一个用户下订单的接口,但是用户下订单之前一定要去检查一下库存,确保库存足够了才会给用户下单。
由于系统有一定的并发,所以会预先将商品的库存保存在 Redis 中,用户下单的时候会更新 Redis 的库存。
此时系统架构如下:

但是这样一来会产生一个问题:假如某个时刻,Redis 里面的某个商品库存为 1。
此时两个请求同时到来,其中一个请求执行到上图的第 3 步,更新数据库的库存为 0,但是第 4 步还没有执行。
而另外一个请求执行到了第 2 步,发现库存还是 1,就继续执行第 3 步。这样的结果,是导致卖出了 2 个商品,然而其实库存只有 1 个。
很明显不对啊!这就是典型的库存超卖问题。此时,我们很容易想到解决方案:用锁把 2、3、4 步锁住,让他们执行完之后,另一个线程才能进来执行第 2 步。

按照上面的图,在执行第 2 步时,使用 Java 提供的 Synchronized 或者 ReentrantLock 来锁住,然后在第 4 步执行完之后才释放锁。
这样一来,2、3、4 这 3 个步骤就被“锁”住了,多个线程之间只能串行化执行。
但是好景不长,整个系统的并发飙升,一台机器扛不住了。现在要增加一台机器,如下图:

增加机器之后,系统变成上图所示,我的天!假设此时两个用户的请求同时到来,但是落在了不同的机器上,那么这两个请求是可以同时执行了,还是会出现库存超卖的问题。
为什么呢?因为上图中的两个 A 系统,运行在两个不同的 JVM 里面,他们加的锁只对属于自己 JVM 里面的线程有效,对于其他 JVM 的线程是无效的。
因此,这里的问题是:Java 提供的原生锁机制在多机部署场景下失效了,这是因为两台机器加的锁不是同一个锁(两个锁在不同的 JVM 里面)。
那么,我们只要保证两台机器加的锁是同一个锁,问题不就解决了吗?此时,就该分布式锁隆重登场了。
分布式锁的思路是:在整个系统提供一个全局、唯一的获取锁的“东西”,然后每个系统在需要加锁时,都去问这个“东西”拿到一把锁,这样不同的系统拿到的就可以认为是同一把锁。
至于这个“东西”,可以是 Redis、Zookeeper,也可以是数据库。文字描述不太直观,我们来看下图:

通过上面的分析,我们知道了库存超卖场景在分布式部署系统的情况下使用 Java 原生的锁机制无法保证线程安全,所以我们需要用到分布式锁的方案。
那么,如何实现分布式锁呢?接着往下看!
基于 Redis 实现分布式锁
上面分析为啥要使用分布式锁了,这里我们来具体看看分布式锁落地的时候应该怎么样处理。
①常见的一种方案就是使用 Redis 做分布式锁
使用 Redis 做分布式锁的思路大概是这样的:在 Redis 中设置一个值表示加了锁,然后释放锁的时候就把这个 Key 删除。
具体代码是这样的:
// 获取锁 // NX是指如果key不存在就成功,key存在返回false,PX可以指定过期时间 SET anyLock unique_value NX PX 30000 // 释放锁:通过执行一段lua脚本 // 释放锁涉及到两条指令,这两条指令不是原子性的 // 需要用到redis的lua脚本支持特性,redis执行lua脚本是原子性的 if redis.call("get",KEYS[1]) == ARGV[1] then return redis.call("del",KEYS[1]) else return 0 end
这种方式有几大要点:
这时避免了一种情况:假设 A 获取了锁,过期时间 30s,此时 35s 之后,锁已经自动释放了,A 去释放锁,但是此时可能 B 获取了锁。A 客户端就不能删除 B 的锁了。
除了要考虑客户端要怎么实现分布式锁之外,还需要考虑 Redis 的部署问题。
Redis 有 3 种部署方式:
使用 Redis 做分布式锁的缺点在于:如果采用单机部署模式,会存在单点问题,只要 Redis 故障了。加锁就不行了。
采用 Master-Slave 模式,加锁的时候只对一个节点加锁,即便通过 Sentinel 做了高可用,但是如果 Master 节点故障了,发生主从切换,此时就会有可能出现锁丢失的问题。
基于以上的考虑,Redis 的作者也考虑到这个问题,他提出了一个 RedLock 的算法。
这个算法的意思大概是这样的:假设 Redis 的部署模式是 Redis Cluster,总共有 5 个 Master 节点。
通过以下步骤获取一把锁:
获取当前时间戳,单位是毫秒。
轮流尝试在每个 Master 节点上创建锁,过期时间设置较短,一般就几十毫秒。
尝试在大多数节点上建立一个锁,比如 5 个节点就要求是 3 个节点(n / 2 +1)。
客户端计算建立好锁的时间,如果建立锁的时间小于超时时间,就算建立成功了。
要是锁建立失败了,那么就依次删除这个锁。
只要别人建立了一把分布式锁,你就得不断轮询去尝试获取锁。
但是这样的这种算法还是颇具争议的,可能还会存在不少的问题,无法保证加锁的过程一定正确。

②另一种方式:Redisson
此外,实现 Redis 的分布式锁,除了自己基于 Redis Client 原生 API 来实现之外,还可以使用开源框架:Redission。
Redisson 是一个企业级的开源 Redis Client,也提供了分布式锁的支持。我也非常推荐大家使用,为什么呢?
回想一下上面说的,如果自己写代码来通过 Redis 设置一个值,是通过下面这个命令设置的:
SET anyLock unique_value NX PX 30000
这里设置的超时时间是 30s,假如我超过 30s 都还没有完成业务逻辑的情况下,Key 会过期,其他线程有可能会获取到锁。
这样一来的话,***个线程还没执行完业务逻辑,第二个线程进来了也会出现线程安全问题。
所以我们还需要额外的去维护这个过期时间,太麻烦了~我们来看看 Redisson 是怎么实现的?
先感受一下使用 Redission 的爽:
Config config = new Config(); config.useClusterServers() .addNodeAddress("redis://192.168.31.101:7001") .addNodeAddress("redis://192.168.31.101:7002") .addNodeAddress("redis://192.168.31.101:7003") .addNodeAddress("redis://192.168.31.102:7001") .addNodeAddress("redis://192.168.31.102:7002") .addNodeAddress("redis://192.168.31.102:7003"); RedissonClient redisson = Redisson.create(config); RLock lock = redisson.getLock("anyLock"); lock.lock(); lock.unlock();
就是这么简单,我们只需要通过它的 API 中的 Lock 和 Unlock 即可完成分布式锁,他帮我们考虑了很多细节:
Redisson 所有指令都通过 Lua 脚本执行,Redis 支持 Lua 脚本原子性执行。
Redisson 设置一个 Key 的默认过期时间为 30s,如果某个客户端持有一个锁超过了 30s 怎么办?
Redisson 中有一个 Watchdog 的概念,翻译过来就是看门狗,它会在你获取锁之后,每隔 10s 帮你把 Key 的超时时间设为 30s。
这样的话,就算一直持有锁也不会出现 Key 过期了,其他线程获取到锁的问题了。

这里稍微贴出来其实现代码:
// 加锁逻辑 private <T> RFuture<Long> tryAcquireAsync(long leaseTime, TimeUnit unit, final long threadId) { if (leaseTime != -1) { return tryLockInnerAsync(leaseTime, unit, threadId, RedisCommands.EVAL_LONG); } // 调用一段lua脚本,设置一些key、过期时间 RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(), TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG); ttlRemainingFuture.addListener(new FutureListener<Long>() { @Override public void operationComplete(Future<Long> future) throws Exception { if (!future.isSuccess()) { return; } Long ttlRemaining = future.getNow(); // lock acquired if (ttlRemaining == null) { // 看门狗逻辑 scheduleExpirationRenewal(threadId); } } }); return ttlRemainingFuture; } <T> RFuture<T> tryLockInnerAsync(long leaseTime, TimeUnit unit, long threadId, RedisStrictCommand<T> command) { internalLockLeaseTime = unit.toMillis(leaseTime); return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command, "if (redis.call('exists', KEYS[1]) == 0) then " + "redis.call('hset', KEYS[1], ARGV[2], 1); " + "redis.call('pexpire', KEYS[1], ARGV[1]); " + "return nil; " + "end; " + "if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " + "redis.call('hincrby', KEYS[1], ARGV[2], 1); " + "redis.call('pexpire', KEYS[1], ARGV[1]); " + "return nil; " + "end; " + "return redis.call('pttl', KEYS[1]);", Collections.<Object>singletonList(getName()), internalLockLeaseTime, getLockName(threadId)); } // 看门狗最终会调用了这里 private void scheduleExpirationRenewal(final long threadId) { if (expirationRenewalMap.containsKey(getEntryName())) { return; } // 这个任务会延迟10s执行 Timeout task = commandExecutor.getConnectionManager().newTimeout(new TimerTask() { @Override public void run(Timeout timeout) throws Exception { // 这个操作会将key的过期时间重新设置为30s RFuture<Boolean> future = renewExpirationAsync(threadId); future.addListener(new FutureListener<Boolean>() { @Override public void operationComplete(Future<Boolean> future) throws Exception { expirationRenewalMap.remove(getEntryName()); if (!future.isSuccess()) { log.error("Can't update lock " + getName() + " expiration", future.cause()); return; } if (future.getNow()) { // reschedule itself // 通过递归调用本方法,***循环延长过期时间 scheduleExpirationRenewal(threadId); } } }); } }, internalLockLeaseTime / 3, TimeUnit.MILLISECONDS); if (expirationRenewalMap.putIfAbsent(getEntryName(), new ExpirationEntry(threadId, task)) != null) { task.cancel(); } }
另外,Redisson 还提供了对 Redlock 算法的支持,它的用法也很简单:
RedissonClient redisson = Redisson.create(config); RLock lock1 = redisson.getFairLock("lock1"); RLock lock2 = redisson.getFairLock("lock2"); RLock lock3 = redisson.getFairLock("lock3"); RedissonRedLock multiLock = new RedissonRedLock(lock1, lock2, lock3); multiLock.lock(); multiLock.unlock();
小结:本节分析了使用 Redis 作为分布式锁的具体落地方案以及其一些局限性,然后介绍了一个 Redis 的客户端框架 Redisson,这也是我推荐大家使用的,比自己写代码实现会少 Care 很多细节。
基于 Zookeeper 实现分布式锁
常见的分布式锁实现方案里面,除了使用 Redis 来实现之外,使用 Zookeeper 也可以实现分布式锁。
在介绍 Zookeeper(下文用 ZK 代替)实现分布式锁的机制之前,先粗略介绍一下 ZK 是什么东西:ZK 是一种提供配置管理、分布式协同以及命名的中心化服务。
ZK 的模型是这样的:ZK 包含一系列的节点,叫做 Znode,就好像文件系统一样,每个 Znode 表示一个目录。
然后 Znode 有一些特性:
例如我们可以创建子节点“/lock/node-”并且指明有序,那么 ZK 在生成子节点时会根据当前的子节点数量自动添加整数序号。
也就是说,如果是***个创建的子节点,那么生成的子节点为 /lock/node-0000000000,下一个节点则为 /lock/node-0000000001,依次类推。
当前 ZK 有如下四种事件:
基于以上的一些 ZK 的特性,我们很容易得出使用 ZK 实现分布式锁的落地方案:
使用 ZK 的临时节点和有序节点,每个线程获取锁就是在 ZK 创建一个临时有序的节点,比如在 /lock/ 目录下。
创建节点成功后,获取 /lock 目录下的所有临时节点,再判断当前线程创建的节点是否是所有的节点的序号最小的节点。
如果当前线程创建的节点是所有节点序号最小的节点,则认为获取锁成功。
如果当前线程创建的节点不是所有节点序号最小的节点,则对节点序号的前一个节点添加一个事件监听。
比如当前线程获取到的节点序号为 /lock/003,然后所有的节点列表为[/lock/001,/lock/002,/lock/003],则对 /lock/002 这个节点添加一个事件监听器。
如果锁释放了,会唤醒下一个序号的节点,然后重新执行第 3 步,判断是否自己的节点序号是最小。
比如 /lock/001 释放了,/lock/002 监听到时间,此时节点集合为[/lock/002,/lock/003],则 /lock/002 为最小序号节点,获取到锁。
整个过程如下:

具体的实现思路就是这样,至于代码怎么写,这里比较复杂就不贴出来了。
Curator 介绍
Curator 是一个 ZK 的开源客户端,也提供了分布式锁的实现。它的使用方式也比较简单:
InterProcessMutex interProcessMutex = new InterProcessMutex(client,"/anyLock"); interProcessMutex.acquire(); interProcessMutex.release();
其实现分布式锁的核心源码如下:
private boolean internalLockLoop(long startMillis, Long millisToWait, String ourPath) throws Exception { boolean haveTheLock = false; boolean doDelete = false; try { if ( revocable.get() != null ) { client.getData().usingWatcher(revocableWatcher).forPath(ourPath); } while ( (client.getState() == CuratorFrameworkState.STARTED) && !haveTheLock ) { // 获取当前所有节点排序后的集合 List<String> children = getSortedChildren(); // 获取当前节点的名称 String sequenceNodeName = ourPath.substring(basePath.length() + 1); // +1 to include the slash // 判断当前节点是否是最小的节点 PredicateResults predicateResults = driver.getsTheLock(client, children, sequenceNodeName, maxLeases); if ( predicateResults.getsTheLock() ) { // 获取到锁 haveTheLock = true; } else { // 没获取到锁,对当前节点的上一个节点注册一个监听器 String previousSequencePath = basePath + "/" + predicateResults.getPathToWatch(); synchronized(this){ Stat stat = client.checkExists().usingWatcher(watcher).forPath(previousSequencePath); if ( stat != null ){ if ( millisToWait != null ){ millisToWait -= (System.currentTimeMillis() - startMillis); startMillis = System.currentTimeMillis(); if ( millisToWait <= 0 ){ doDelete = true; // timed out - delete our node break; } wait(millisToWait); }else{ wait(); } } } // else it may have been deleted (i.e. lock released). Try to acquire again } } } catch ( Exception e ) { doDelete = true; throw e; } finally{ if ( doDelete ){ deleteOurPath(ourPath); } } return haveTheLock; }
其实 Curator 实现分布式锁的底层原理和上面分析的是差不多的。这里我们用一张图详细描述其原理:

小结:本节介绍了 ZK 实现分布式锁的方案以及 ZK 的开源客户端的基本使用,简要的介绍了其实现原理。
两种方案的优缺点比较
学完了两种分布式锁的实现方案之后,本节需要讨论的是 Redis 和 ZK 的实现方案中各自的优缺点。
对于 Redis 的分布式锁而言,它有以下缺点:
它获取锁的方式简单粗暴,获取不到锁直接不断尝试获取锁,比较消耗性能。
另外来说的话,Redis 的设计定位决定了它的数据并不是强一致性的,在某些极端情况下,可能会出现问题。锁的模型不够健壮。
即便使用 Redlock 算法来实现,在某些复杂场景下,也无法保证其实现 100% 没有问题,关于 Redlock 的讨论可以看 How to do distributed locking。
Redis 分布式锁,其实需要自己不断去尝试获取锁,比较消耗性能。
但是另一方面使用 Redis 实现分布式锁在很多企业中非常常见,而且大部分情况下都不会遇到所谓的“极端复杂场景”。
所以使用 Redis 作为分布式锁也不失为一种好的方案,最重要的一点是 Redis 的性能很高,可以支撑高并发的获取、释放锁操作。
对于 ZK 分布式锁而言:
但是 ZK 也有其缺点:如果有较多的客户端频繁的申请加锁、释放锁,对于 ZK 集群的压力会比较大。
小结:综上所述,Redis 和 ZK 都有其优缺点。我们在做技术选型的时候可以根据这些问题作为参考因素。
感谢各位的阅读,以上就是“分布式锁用Redis还是Zookeeper”的内容了,经过本文的学习后,相信大家对分布式锁用Redis还是Zookeeper这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是天达云,小编将为大家推送更多相关知识点的文章,欢迎关注!