这篇文章主要为大家展示了“PyTorch梯度裁剪如何避免训练loss nan”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“PyTorch梯度裁剪如何避免训练loss nan”这篇文章吧。
训练代码使用示例如下:
from torch.nn.utils import clip_grad_norm_
outputs = model(data)
loss= loss_fn(outputs, target)
optimizer.zero_grad()
loss.backward()
# clip the grad
clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2)
optimizer.step()
其中,max_norm为梯度的最大范数,也是梯度裁剪时主要设置的参数。
备注:网上有同学提醒在(强化学习)使用了梯度裁剪之后训练时间会大大增加。目前在我的检测网络训练中暂时还没有碰到这个问题,以后遇到再来更新。
补充:pytorch训练过程中出现nan的排查思路
1、最常见的就是出现了除0或者log0这种
看看代码中在这种操作的时候有没有加一个很小的数,但是这个数数量级要和运算的数的数量级要差很多。一般是1e-8。
2、在optim.step()之前裁剪梯度
optim.zero_grad()
loss.backward()
nn.utils.clip_grad_norm(model.parameters, max_norm, norm_type=2)
optim.step()
max_norm一般是1,3,5。
3、前面两条还不能解决nan的话
就按照下面的流程来判断。
...
loss = model(input)
# 1. 先看loss是不是nan,如果loss是nan,那么说明可能是在forward的过程中出现了第一条列举的除0或者log0的操作
assert torch.isnan(loss).sum() == 0, print(loss)
optim.zero_grad()
loss.backward()
# 2. 如果loss不是nan,那么说明forward过程没问题,可能是梯度爆炸,所以用梯度裁剪试试
nn.utils.clip_grad_norm(model.parameters, max_norm, norm_type=2)
# 3.1 在step之前,判断参数是不是nan, 如果不是判断step之后是不是nan
assert torch.isnan(model.mu).sum() == 0, print(model.mu)
optim.step()
# 3.2 在step之后判断,参数和其梯度是不是nan,如果3.1不是nan,而3.2是nan,
# 特别是梯度出现了Nan,考虑学习速率是否太大,调小学习速率或者换个优化器试试。
assert torch.isnan(model.mu).sum() == 0, print(model.mu)
assert torch.isnan(model.mu.grad).sum() == 0, print(model.mu.grad)
以上是“PyTorch梯度裁剪如何避免训练loss nan”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注天达云行业资讯频道!