这篇文章主要讲解了“去重计数有哪些实现方式”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“去重计数有哪些实现方式”吧!
这是一个关于 pandas 从基础到进阶的练习题系列,来源于 github 上的 guipsamora/pandas_exercises 。这个项目从基础到进阶,可以检验你有多么了解 pandas。
我会挑选一些题目,并且提供比原题库更多的解决方法以及更详尽的解析。
如下数据:

数据描述:
需求:数据中共有多少个订单?
下面是答案了
方式1
因为 order_id 列是存在重复的,那么一种比较直观的方式就是去重+计数:
len(df.order_id.drop_duplicates()) 1834
但是你可能不知道的是,这个方式是不准确的!
方式2
之所以说上一种方式是不准确,是因为没有考虑到空值的问题。
len 函数不会忽略空值(nan) ,因此如果列中有空值,那么就比正确结果数量多。
正确的做法是:
len(df.order_id.drop_duplicates().dropna())
提示:
即使列中有多个 nan ,经过去重后只会保留一个 nan 值
方式3
实际上,pandas 本身有提供一个忽略 nan 的计数方法:
df.order_id.drop_duplicates().count()
点评:
这种方式个人认为最合适
方式4
pandas 为列(Series)提供了一个快速汇总计数方法:
df.order_id.value_counts()

这相当于实现了去重,因此:
df.order_id.value_counts().count()
感谢各位的阅读,以上就是“去重计数有哪些实现方式”的内容了,经过本文的学习后,相信大家对去重计数有哪些实现方式这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是天达云,小编将为大家推送更多相关知识点的文章,欢迎关注!